Humidity Control

Humidity Control guide for beginners

Refrigeration air-conditioning equipment usually reduces the absolute humidity of the air processed by the system. The relatively cold (below the dewpoint) evaporator coil condenses water vapor from the processed air (much like an ice-cold drink will condense water on the outside of a glass), sending the water to a drain and removing water vapor from the cooled space and lowering the relative humidity in the room. Since humans perspire to provide natural cooling by the evaporation of perspiration from the skin, drier air (up to a point) improves the comfort provided. The comfort air conditioner is designed to create a 40% to 60% relative humidity in the occupied space. In food-retailing establishments, large open chiller cabinets act as highly effective air dehumidifying units.
A specific type of air conditioner that is used only for dehumidifying is called a dehumidifier. A dehumidifier is different from a regular air conditioner in that both the evaporator and condenser coils are placed in the same air path, and the entire unit is placed in the environment that is intended to be conditioned (in this case dehumidified), rather than requiring the condenser coil to be outdoors. Having the condenser coil in the same air path as the evaporator coil produces warm, dehumidified air. The evaporator (cold) coil is placed first in the air path, dehumidifying the air exactly as a regular air conditioner does. The air next passes over the condenser coil, re-warming the now dehumidified air. Having the condenser coil in the main air path rather than in a separate, outdoor air path (as with a regular air conditioner) results in two consequences: the output air is warm rather than cold, and the unit is able to be placed anywhere in the environment to be conditioned, without a need to have the condenser outdoors.
Unlike a regular air conditioner, a dehumidifier will actually heat a room just as an electric heater that draws the same amount of power (watts) as the dehumidifier would. A regular air conditioner transfers energy out of the room by means of the condenser coil, which is outside the room (outdoors). That is, the room can be considered a thermodynamic system from which energy is transferred to the external environment. Conversely, with a dehumidifier, no energy is transferred out of the thermodynamic system (room) because the air conditioning unit (dehumidifier) is entirely inside the room. Therefore all of the power consumed by the dehumidifier is energy that is input into the thermodynamic system (the room) and remains in the room (as heat). In addition, if the condensed water has been removed from the room, the amount of heat needed to boil that water has been added to the room. This is the inverse of adding water to the room with an evaporative cooler.
Dehumidifiers are commonly used in cold, damp climates to prevent mold growth indoors, especially in basements. They are also used to protect sensitive equipment from the adverse effects of excessive humidity in tropical countries.